

現,这一古老而神 秘的艺术形式,以 其绚丽的色彩、宝

石般的光泽和质感以及历经 千百年而不褪色、不失光彩的 特性,成为人类艺术宝库中的 瑰宝(图 1)。它不仅是一种 装饰工艺,更是一种文化的传 承,见证了人类文明的辉煌历 程。本文将深入探讨珐琅的起 源、制作工艺和化学稳定性等。

1. 珐琅的起源与发展

珐琅,又称"佛郎和法蓝", 是以石英、长石和硼砂等为原料 经高温熔融制成的无机玻璃质材 料,覆盖于金属或其他材质表 面(图2)。珐琅的历史可以追溯 到公元前12世纪的埃及。最初, 珐琅主要是作为一种装饰金属的 工艺而存在。它通过将熔融的玻 璃质材料涂覆在金属表面,经过 高温烧制后形成一层坚固的保护 层。这种工艺在古代地中海地区 得到了广泛的应用,尤其是在珠 宝制作和宗教用品上。15世纪中 叶, 珐琅工艺在西欧法国得到了 进一步的发展。当时的珐琅制品 以其精美的工艺和鲜艳的色彩而 闻名于世。随后, 珐琅工艺经蒙 古西征传入中国,并在明清时期 达到了鼎盛[1]。

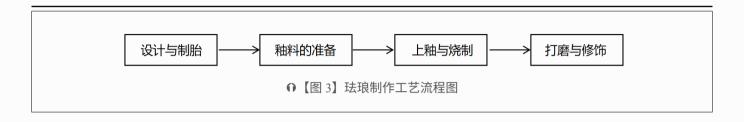
按胎体材质可分为铜胎珐 琅(如景泰蓝(因其在明代景泰

●【图 1】 a. 珐琅画(图片来源于新浪新闻); b. 掐丝珐琅狮戏球海马纹碗(图片来源于网易); c. 掐丝珐琅缠枝莲纹熏炉(图片来源于 360 个人图书馆); d. 掐丝珐琅首饰(图片来源于百度百科)

●【图 2】(左)清光绪-金漆多宝花卉珐琅盆景(图摄于北京颐和园博物馆);(右)元-掐丝珐琅缠枝莲纹鼎式炉(图片来源于搜狐)

年间大量烧制且以孔雀蓝为主色 调而得名))、银胎珐琅、金胎 珐 琅 、 瓷 胎 珐 琅 及 玻 璃 胎 珐 琅。 金属胎体影响珐琅的质感和 应用场景,如铜胎珐琅多用于工 艺品,金胎珐琅常用于高端首饰。

工艺分类: ①掐丝珐琅: 金属表面焊接金属丝形成隔间,填充珐琅釉料,代表作为明清景泰蓝; ②画珐琅: 直接在金属胎上绘制珐琅釉料,需多次烧制,工艺复杂; ③内填珐琅: 金属胎錾


刻花纹后填充珐琅,呈现宝石镶嵌效果; ④錾胎/锤胎珐琅: 通过錾刻或锤揲金属形成图案,再施珐琅,立体感强; ⑤透明珐琅: 罩以透明釉,显露金属浮雕的明暗变化。

珐琅制品用途广泛: 首饰珐琅(如腕表表盘)、工艺品珐琅(花瓶、摆件)、宗教用品(宗教纹饰器皿)和建筑装饰(珐琅板)等,兼具实用性与艺术价值。北京以掐丝珐琅(景泰蓝)闻名,广东

擅长画珐琅(广珐琅),欧洲则发展出微绘珐琅等独特风格。

2. 珐琅的制作工艺

珐琅的制作工艺复杂且精细,需要经过多个步骤才能完成一件精美的作品(图 3)。

2.1 设计与制胎

制作珐琅的第一步是设计。 设计师会根据需求绘制出图 案,然后选择合适的金属材料制 作胎体。常见的金属胎体材料包 括铜、金和银。以铜为例,工匠 会将铜片裁剪成所需的形状,然 后通过锤打、焊接等工艺制作出 胎体的雏形。

2.2 釉料的准备

珐琅的釉料主要由石英、长石、硼砂和氧化物等无机矿物质组成。这些原料经过研磨、筛选后,与水或粘合剂混合,形成糊状或浆料。为了获得不同的颜色,工匠会在釉料中加入各种金属氧化物作为着色剂。例如,钴氧化物(CoO)用于蓝色,铁氧化物(Fe₂O₃)用于红色和棕色,

铬氧化物 (Cr₂O₃) 用于绿色,锰 氧化物 (Mn³⁺) 用于紫色 ^[2]。

2.3 上釉与烧制

将准备好的珐琅釉料均匀地 涂覆在金属胎体表面,通常需要 多次上釉。每一层釉料都需要干 燥后,再放入高温窑炉中进行烧 制。烧制温度一般在 750~850℃ 之间。在高温下,珐琅粉末会熔 化并与金属胎体牢固结合,形成 光滑的玻璃状涂层。烧制完成 后,珐琅制品会呈现出鲜艳的色 彩和光泽。

2.4 打磨与修饰

烧制后的珐琅制品表面可能 会有一些不平整的地方,需要进 行打磨和修饰。工匠会使用细砂 纸或磨石对表面进行打磨,使其 更加光滑。此外,还可以通过雕 刻、镶嵌等工艺对珐琅制品进行 进一步的装饰。

3. 珐琅不褪色的原因

珐琅不褪色的原因主要归结 于其独特的制作工艺和化学稳定 性。以下是详细的分析:

3.1 高温烧制

珐琅的制作过程中,高温烧制是一个关键步骤。如式(1)所示,在高温环境下,珐琅的玻璃质材料与金属氧化物颜料发生复杂的物理和化学反应,形成了稳定的化学键¹³。这些反应使得颜料颗粒被紧密地包裹在玻璃质基体中,形成了一个均匀且稳定的微观结构。这种结构类似于宝石的内部结构,颜料被固定在其中,难以被外界因素影响。

$$Na_2SiO_3 + CaO \xrightarrow{\underline{\beta}\underline{a}} CaSiO_3$$
 (1)

3.2 玻璃质基体的保护作用

珐琅的玻璃质基体(主要成分是硅酸盐)具有很强的耐腐蚀性,不仅为颜料提供了物理支撑,还起到了重要的保护作用。同时,玻璃质基体的致密结构可以有效阻挡紫外线、水分和其他化学物质的渗透,从而保护颜料免受氧化和分解的影响。

例如,在珐琅制品表面形成的玻璃质涂层,其厚度通常在0.1~0.5 mm之间。这种涂层就像一层坚固的"防护盾",将内部的颜料与外界环境隔离开来^[4]。即使在极端的气候条件下,如高湿度和强酸雨等,珐琅制品依然能够保持其色彩和光泽。

3.3 颜料的化学稳定性

珐琅颜料大多是由金属氧化物组成的,这些氧化物本身具有很高的化学稳定性。如式(2)所示,氧化铁(Fe₂O₃)是红色颜料的主要成分,它在高温烧制过程中会与玻璃质材料形成稳定的铁铝酸盐^[5]。这种化合物不仅耐高温,还具有很强的抗紫外线和抗化学腐蚀能力。

$$Fe_2O_3 + Al_2O_3 + 2CaO + SiO_2 \xrightarrow{\overline{A}} Ca_2FeAl_2SiO_7$$
 (2)

此外,珐琅颜料在高温烧制过程中会经历复杂的化学反应,形成稳定的晶体结构。这些晶体结构具有很强的抗光性和抗化学性,使得颜料在长期使用中不会发生褪色。

3.4 历史见证

从历史的角度来看,珐琅的耐久性得到了充分的证明。许多古代的珐琅制品,如中国的景泰蓝和欧洲的珐琅首饰等,经过数百年的岁月洗礼,依然色彩鲜艳。这些古老的珐琅制品不仅展示了珐琅的化学稳定性,还体现了其艺术价值。

例如,故宫博物院收藏的明 代景泰蓝制品,其表面的珐琅色 彩依然如新。这些制品经历了数 百年的时间,依然能够展现出珐 琅的美丽和魅力。

4. 珐琅的应用领域

珐琅的不褪色特性和化学稳 定性使其在多个领域得到了广泛 应用。

4.1 艺术品

珐琅在艺术品领域也有广 泛的应用。珐琅可以用于制作 各种艺术品,如画作和雕塑 等(图 4a)。这些艺术品不仅具 有很高的艺术价值,还能够长期保存。

例如,法国的利摩日(Limoges) 珐琅画 [6-7] 以其精湛的工艺和鲜艳的色彩而闻名。这些画作在高温烧制过程中形成了稳定的化学结构,能够抵御各种环境因素的影响。

4.2 钟表

珐琅表盘是高端钟表的标志 性特征之一。其不仅具有极高的 艺术价值,还能够保证钟表的耐 用性和美观性(图 4b)。

4.3 珠宝首饰

珐琅首饰以其绚丽的色彩和宝石般的光泽而受到人们的喜爱。珐琅可以用于制作各种首饰,如戒指、项链和手镯等(图 4c)。这些首饰不仅美观,而且具有很高的耐久性。

例如,卡地亚(Cartier)的珐 琅首饰以其精湛的工艺和鲜艳的 色彩而闻名。这些首饰在日常佩 戴中能够抵御各种环境因素的影 响,保持其色彩和光泽。

同样,百达翡丽(Patek Philippe)的珐琅表盘以其精湛的工艺和不褪色特性而备受收藏家的喜爱。这些表盘在高温烧制过程中形成了稳定的化学结构,能够抵御时间的侵蚀。

4.4 建筑装饰

珐琅在建筑装饰领域也有重要的应用。珐琅可以用于制作各种建筑装饰品,如瓷砖和壁画等。这

○【图 4】珐琅工艺品(a)图片来源于百度百家号;(b)图片来源于微博;(c)图片来源于搜狐;(d)图片来源于 360个人图书馆

些装饰品不仅美观,而且具有很高的耐久性(图 4d)。

例如,北京故宫的景泰蓝装饰以其精湛的工艺和鲜艳的色彩而闻名。这些装饰品在高温烧制过程中形成了稳定的化学结构,能够抵御各种环境因素的影响。

5. 结论

随着科技的发展, 珐琅工艺也在不断创新。现代珐琅工艺不仅保

留了传统的制作方法,还引入了新的技术和材料。例如,现代珐琅制品可以通过激光雕刻等技术进行更复杂的装饰。

同时, 珐琅的应用领域也在不断扩大。除了传统的珠宝首饰、钟表和艺术品等领域, 珐琅还被应用于建筑装饰和汽车内饰等领域。这些新的应用领域为珐琅的发展提供了更广阔的空间。

参考文献

- [1] 章美薇. 珐琅工艺的起源与传播研究[D]. 北京: 北京服装学院, 2017.
- [2] 王承遇, 卢琪. 中国古代琉璃着色剂的演变[J]. 玻璃与搪瓷, 2017, 45(5): 23-28.
- [3] Colomban P, Kirmizi B, Gougeon C, et al. Pigments and glassy matrix of the 17th-18th century enamelled French watches: A non-invasive on-site Raman and pXRF study[J]. Cultural Heritage, 2020, 44: 1-14.
- [4] Colomban P, Franci G S, Ngo A T, et al. Non-invasive Raman and XRF study of Mīnā'ī decoration, the first sophisticated painted enamels[J]. Materials, 2025, 18(3): 575-592.
- [5] Oezcoban H, Yilmaz E D, Schneider G A. Hierarchical microcrack model for materials exemplified at enamel[J]. Dental Mater, 2018, 34(1): 69-77.
- [6] Colomban P, Gerken M, Gironda M, et al. On-site micro-XRF mapping of enameled porcelain paintings and sculpture. First demonstration[J]. Europ Ceram Soc, 2025, 45(1): 124-163.
- [7] Barba C I, Nucera A, Barberi R C, et al. Study and micro-Raman characterization of pigments present on majolicas of historical and artistic interest from Gerace, Italy[J]. Heritage Sci, 2023, 11(1): 114-139.