

海参活性成分及其在 天然功能性化妆品中的应用前景

作者: 伏成玉; Email: 55007474@qq.com

摘要

海洋生物因其独特的生物多样性和丰富的活性化合物,被广泛应用于食品、医药及化妆品领域。海参,作为一种高蛋白、低脂肪、无胆固醇的海洋无脊椎动物,不仅具备显著的营养和药用价值,也在近年来逐渐成为化妆品行业的新宠。研究表明,海参中的生物活性物质具备抗衰老、皮肤美白、抗微生物和促进伤口愈合等多种功能。其中,类菌胞素氨基酸(MAAs)具有优异的紫外线吸收和抗氧化性能;特定成分对酪氨酸酶有抑制作用,有望用于皮肤美白;其抗菌成分如叶黄素和β-胡萝卜素可有效防止微生物污染;而糖胺聚糖等则展现出显著的伤口愈合效果。综上,海参作为天然多功能化妆品原料,展现出广阔的商业应用前景。

1. 前言

海洋作为地球上最大的生态 系统,拥有极其丰富的牛物多样 性,是一个尚待继续深入挖掘的 天然牛物活性物质宝库。由干海洋 环境的独特性,海洋生物在长期进 化过程中发展出多样而独特的代 谢机制,产生了大量具有生理活性 的新型化合物。这些天然产物在 结构 上常具有新颖性和复杂性,表 现出多种潜在的生物学功能, 近年 来引起了科学界和工业界的广泛 关注。伴随着人们对健康和美容需 求的提升以及对天然产品偏好的 不断增长,海洋生物的活性成分在 医药、功能食品、营养保健以及化 妆品等领域的应用潜力不断被发 掘。迄今为止,已有众多具有药理 活性和营养价值的海洋生物被成 功应用于食品和医药行业,取得了 显著成果。与此同时, 从海洋资源 中筛选和提取新型的牛物活性成 分作为化妆品原料的研究也呈现 快速发展的趋势。

化妆品作为一种日常消费

品,广泛用干人体表面以实现清 洁、美化、改善外观和提升吸引力 等目的。在传统意义上, 化妆品更 偏重干外在修饰与基础护理,而近 年来,一种融合药理功能与美容效 果的"药妆"(Cosmeceuticals) 概念应运而生。药妆品不仅具备 化妆品的外用功能, 更富含具有牛 理活性或药理作用的成分,能够辅 助改善皮肤问题、延缓衰老甚至参 与皮肤治疗。因此,"药妆"逐渐 成为美容护肤领域的重要发展方 向。尤其是来源于海洋生物的天 然成分,因其独特的结构、低毒性 和高活性,受到消费者和研发人员 的广泛青睐,成为"蓝色药妆"中 最具吸引力的组成部分之一。

在众多海洋生物中,海参(学名: Holothurians)是一种具有高营养和高药用价值的海洋无脊椎动物,早在古代就被视为珍贵的滋补食材,尤其在中国和日本等亚洲国家被广泛食用。海参体型柔软、呈圆柱状,属于棘皮动物门(图 1)[1],主要生活在海底,

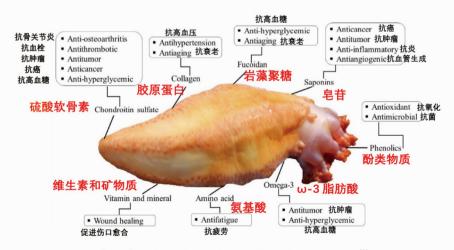
以摄取微小藻类和有机物为食。 其营养价值极高,富含优质蛋白 质、低糖、低脂且不含胆固醇,是 典型的高蛋白、低热量健康食品。 除此之外,海参中还富集了多种 生物活性化合物,如海参皂苷、多 肽、多糖、粘多糖及多种矿物质 和微量元素,这些成分在抗氧化、 抗炎、抗肿瘤、免疫调节和促进 组织修复等方面表现出卓越的药 理作用(表1)。海参在传统中医 中被誉为"百补之王"和"补肾第 一良药",具有极高的保健和药 用价值。随着科技的不断进步和 提取技术的优化,越来越多研究 聚焦于海参中活性成分的化妆品 应用潜力。特别是在抗衰老、保 湿、美白和修复等方面,海参提 取物表现出显著效果, 为天然功 能型化妆品提供了新的思路和创 新方向。近年来,海参的这一特性 吸引了化妆品研发企业的高度重 视,相关产品不断问世,逐步拓 展出一个具有巨大增长潜力的新 兴市场。

∩【图1】西印度洋中的罕见海参[1]

表 1 海参活性成分及其功能应用表

类别	代表成分	主要功能与作用	应用领域
蛋白质 / 多肽类	高质量蛋白、海参多肽	促进组织修复、增强免疫、抗 炎、抗氧化、细胞再生	保健食品、抗衰老护肤、修 复类产品
多糖类	海参多糖、糖胺聚糖 (粘多糖)	增强免疫、抗氧化、保湿、提 升皮肤弹性、促进伤口愈合	功能食品、医用敷料、保湿 / 修复护肤品
皂苷类	海参皂苷 (如 Holothurin)	抗肿瘤、抗菌、促进胶原蛋 白合成	抗老精华、功能性保健品
氨基酸类	类菌胞素氨基酸 (MAAs)	抗氧化、天然 UV 吸收剂、抗 光老化	绿色防晒霜、抗衰护肤品
类胡萝卜素	β- 胡萝卜素、叶黄素	抗氧化、清除自由基、细胞 保护	抗污染护肤、抗氧化产品

2. 海参作为化妆品原料的生 物活性

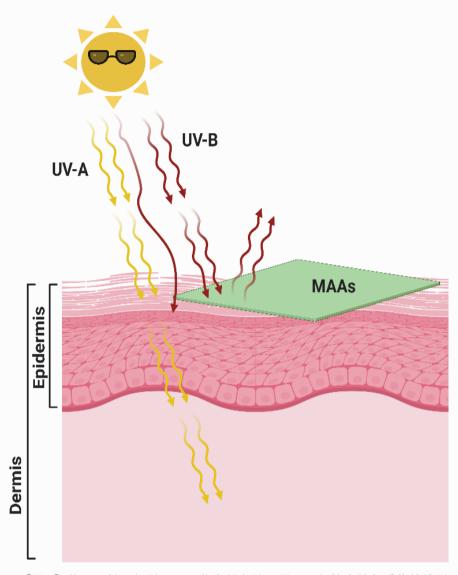

海参作为化妆品原料, 具有丰 富的生物活性物质,是高效护肤品 开发的重要天然来源。研究表 明,海参体内富含多种对皮肤具有 显著益处的活性成分,如海参皂 苷、多肽、胶原蛋白、粘多糖、维生 素和微量元素等(图 2)[2]。其中, 海参皂苷具有抗氧化、抗炎和抗衰 老作用,能够有效抑制自由基生 成,延缓皮肤老化;海参多肽则具 备良好的修复和保湿性能,有助于 增强皮肤屏障功能; 海参胶原蛋 白能够促进皮肤弹性和紧致度, 改善细纹和松弛现象。此外,海参 中的粘多糖成分具备极强的保湿 锁水能力,可提升肌肤含水量。这 些生物活性物质的协同作用,使海

参成为具有广泛开发潜力的高端 化妆品原料。

2.1 海参的抗皮肤衰老作用

与其他器官不同的是,皮肤作为重要的屏障,与环境直接接触。来自太阳的紫外线(UV)照

射是对皮肤有害的主要环境因素。这种紫外线照射会导致皮肤 光老化。此外,在过去的几十年 里,平流层臭氧层大量流失,这 引发了人们对太阳紫外线辐射强 度增强的关注。因此,为皮肤提



○【图 2】北极参生物活性化合物及其潜在的益处 [2]

供足够的光保护是很重要的。研 究者已在黑海参 (Holoturiaatra) 的表皮组织中发现了光保护化合 物,例如类胡萝卜素和类菌胞素 氨基酸 (MAAs)。MAAs 在光保护 中的作用已有报道[3],可作为广 谱紫外线吸收剂。例如, MAAs 被封装在脂质体中,用作 UVA 引 起的皮肤老化的防晒霜(图 3)[4]。 比较皮肤脂质氧化和皮肤老化参 数,如弹性、皱纹深度和粗糙 度, MAAs 脂质体的表现与合 成UVA防晒霜的乳霜作用一 样。紫外辐照后, MAAs 不产 生反应性中间体, 这表明 MAAs 能够将吸收的紫外线转化为无害 的热能。MAAs 作为光保护化合 物的高效性表明其在化妆品行业 中的潜在商业应用。然而,为了 满足防晒要求, MAAs 中的氨基 酸官能团必须被烷基氨基取代, 以降低它们的亲水性。MAAs除 了抗氧化作用还发挥了额外的作 用,如一些 MAAs 不仅可以通 过吸收高能光子并将能量作为热 量消散,还可以通过清除活性 氧(ROS)来保护皮肤免受紫外 线辐射, MAAs 显示出有效的抗 氧化活性。

2.2 海参的皮肤美白作用

近些年,皮肤美白在全球范围内得到重视,尤其在亚洲。 皮肤美白可以通过几种作用机

 $oldsymbol{lack}$ 【图 3】使用天然环保型 MAAs 作为绿色防晒霜,以保护皮肤免受紫外线引起的皮肤损伤 $^{[4]}$

制来实现,例如抑制小眼病相关的转录因子、下调黑皮质素受体的活性、干扰黑素体的成熟和转移、黑素细胞丢失和酪氨酸酶抑制。酪氨酸酶是一种 60~70 kDa的含铜糖蛋白,被认为是黑色素生成途径的限速酶。酪氨酸酶催化两个连续的氧化反应^[5]:首先催化单酚(如酪氨酸)发生羟基

化反应生成 *L*- 二羟基苯丙氨酸 (DOPA,即邻二酚类物质),随后进一步将多巴氧化为多巴醌 (邻醌类化合物) (图 4)。醌类物质具有高反应活性,可自发聚合形成高分子量聚合物或棕色色素,也能与氨基酸和蛋白质等亲核基团发生反应,显著促进棕色物质的生成。因此,酪氨酸酶作

为黑色素合成的关键酶,其活性 调控在美白化妆品领域的重要性 日益凸显。

尽管目前已有大量关于皮肤 美白化妆品的研究,但由于传统 酪氨酸酶抑制剂普遍存在毒性较 高、稳定性差、皮肤渗透力有限 以及抑制活性不足等问题,其在 实际产品中的应用仍受到较大限 制。因此,从天然资源中筛选 安全高效的新型酪氨酸酶抑制 剂,成为当前皮肤美白研究的重 要方向[3]。近年来,来自海洋生 物尤其是海参的活性成分在这一 领域引起了广泛关注。 Husni 等 人^[3] 研究发现,海参 (Stichopus japonicus)中的水提物和乙醇提 取物均显示出良好的酪氨酸酶抑 制活性,能够有效抑制黑色素生 成。此外,Peng等人^[6]首次从 海参中分离得到的乙基 -α-D- 吡 喃葡萄糖苷和腺苷被鉴定为潜在 的关键酪氨酸酶抑制剂。这些化 合物可能通过与酪氨酸酶天然底 物如 L- 酪氨酸和 L-DOPA 竞争结 合、螯合酶活性位点中的铜离子、 以及与酶中伯氨基形成席夫碱等 方式,从多个途径共同作用以达 到抑制酪氨酸酶活性的效果,从 而有效减少黑色素合成, 具有广 阔的美白应用前景[3,6]。

2.3 海参的抗微生物活性

在化妆品工业中,微生物污

Monophenolase activity (cresolase): 单酚酶活性 (甲酚酶)

Diphenolase activity (catecholase):双酚酶活性(儿茶酚酶)

○【图 4】展示了酪氨酸酶(Tyrosinase)催化两类反应的机制,这两类反应分别是单酚酶活性(甲酚酶)和双酚酶活性(儿茶酚酶)^[5]。注: 1. 单酚酶活性反应: 单酚类化合物在酪氨酸酶催化下与 1/2 分子氧气反应,生成邻二酚(o-Diphenol)。2. 双酚酶活性反应: 邻二酚在酪氨酸酶催化下与 1/2 分子氧气反应,氧化生成邻醌(o-Quinone)

染不仅会引起产品变质和失效,甚至产生异味和变色等感官问题,更严重时还可能因致病菌的存在对消费者健康造成潜在威胁。研究表明,某些病原微生物如金黄色葡萄球菌和大肠杆菌等一旦侵入产品,可引发皮肤感染和眼部刺激等不良反应,尤其在免疫力较弱人群中风险更高^[7]。事实上,微生物污染仍是当前全球化妆品召回事件的主要诱因之一,特别是

在湿热环境条件显著的热带发展中国家,这一问题更为突出^[8]。因此,开发更为高效、安全和天然的防腐系统成为当代化妆品研究的重要方向。在此背景下,海参这一海洋生物资源受到广泛关注。海参种类繁多,其体内富含多种具有生物活性的天然物质。近年来,Xie等^[9]利用定向分离技术,从海参(Cucumaria frondosa)组织中提取出包括叶黄素(Lutein)

和 β - 胡萝卜素 (β -carotene) 在 内的多种天然类胡萝卜素,其中 叶黄素和 β- 胡萝卜素表现出显著 的抗菌活性、表明海参具有潜在 的抗微生物应用价值。Jin 等 [10] 研究表明,这两种成分对金黄色 葡萄球菌 (ATCC 6538) 等典型 化妆品污染菌具有良好的抑制作 用,可能通过抑制细菌群体感 应和破坏细胞膜结构等机制发挥 其抗菌效果[10]。此外,这些提 取的天然类胡萝卜素还具有抗 氧化和光稳定等多重皮肤益处, 为天然防腐剂在功能性护肤品 中的应用提供了有力支持。这 为开发具备多功能特性的绿色 防腐体系提供了新的研究思路 与实践路径。

2.4 海参提取物对伤口愈合的 作用

在亚洲国家,海参长期以来 一直被用作治疗各种内外伤口的 传统药物。海参的生物活性代谢 物被用于促进组织修复和伤口愈 合药物,来自股刺参和赫曼刺参 外皮组织的糖胺聚糖在大鼠中具 有伤口愈合特性[11]。Masre 等[12] 研究者表明,海参的外皮部分 显示出最高的总硫酸糖胺聚 糖含量,其次是内脏和体腔液。 Masre 等 [11] 通过使用电子束辐照 技术将新西兰金海参纳入水凝胶 配方,并作为新型交联 Gamat 水 凝胶敷料推出。Gamat 水凝胶具 有伤口愈合特性,已被证明可用 于治疗大鼠的烧伤伤口。结果显 示, Gamat 水凝胶明显增强了 伤口的收缩,改善了组织再 生。Gamat 水凝胶敷料还可以 调节炎症反应,刺激成纤维细胞 的激活和增殖,并增强胶原纤维 网络的快速生成,从而缩短愈 合时间。大鼠烧伤模型的伤口 加速闭合,部分原因是海参中有 效成分从水凝胶基质中释放出 来,与水凝胶系统提供的湿润环 境发生协同作用。因此,海参可 能为临床实践中的伤口愈合提 供一种新的和有效的替代治疗。

3. 结论

随着现代消费者对天然、安 全和高效护肤品的需求日益增 长,海参作为富含多种生物活性

成分的海洋资源, 在化妆品领域 展现出广阔的应用前景。海参及 其提取物中含有甲壳素、糖胺聚 糖、海参皂苷、多肽、粘多糖以 及紫外吸收物质 MAAs 等多种活 性物质,具有显著的抗氧化、抗 炎、抗衰老、美白保湿、促进胶 原蛋白合成和加速伤口修复等功 效,为天然功能型护肤品的研发 提供了坚实的科学基础。在技术 层面,未来可借助高效分离纯化、 牛物酶解、发酵工程以及纳米递 送系统等先进手段,提高海参活 性成分的稳定性、生物利用度和 皮肤渗透效率,从而优化其在化 妆品中的应用性能。同时,需加 强对海参成分的安全性及长期使 用效果的系统评估,以满足日益 严格的法规要求及消费者对产品 品质的期待。

从产业和市场角度来看,海参与其提取物在天然护肤品、医美辅料以及功能性个人护理产品中的市场潜力巨大,尤其是在高端护肤品领域具备差异化竞争优势。此外,随着"蓝色经济"战略的推进和海洋生物资源保护高级原生、如何在保障生产进行资源保护。时,也是未来发展的关键方向之一。因此,推动海参与化妆品原有望丰富我国本土天然化妆品原

料资源,也将为海洋功能性材料的高值化利用开辟新的路径。通

过多学科交叉融合与产学研协同 创新,海参有望成为引领天然高

效护肤新时代的重要力量。

参考文献

- [1] Conand C, Michonneau F, Paulay G, et al. Diversity of the Holothuroid Fauna (Echinodermata) at La Réunion (Western Indian Ocean)[J]. Western Indian Ocean J Marine Sci, 2010, 9(2): 145-151.
- [2] Hossain A, Dave D, Shahidi F. Northern sea cucumber (*Cucumaria frondosa*): A potential candidate for functional food, nutraceutical, and pharmaceutical sector[J]. Marine Drugs, 2020, 18(5): 274.
- [3] Husni A, Jeon J S, Um B H, et al. Tyrosinase inhibition by water and ethanol extracts of a far eastern sea cucumber, *Stichopus japonicus*[J]. J Sci Food Agric, 2011, 91(9): 1541-1547.
- [4] Singh A, Čížková M, Bišová K, et al. Exploring mycosporine-like amino acids (MAAs) as safe and natural protective agents against UV-induced skin damage[J]. Antioxidants, 2021, 10(5): 683.
- [5] Agarwal P, Gupta R, Agarwal N. A review on enzymatic treatment of phenols in wastewater[J]. J Biotechnol Biomateri, 2016, 6(4): 249.
- [6] Peng L H, Liu S, Xu S Y, et al. Inhibitory effects of salidroside and paeonol on tyrosinase activity and melanin synthesis in mouse B16F10 melanoma cells and ultraviolet B-induced pigmentation in guinea pig skin[J]. Phytomedicine, 2013, 20(12): 1082-1087.
- [7] Abdallah M, Benoliel C, Drider D, et al. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments[J]. Archives Microbiol, 2014, 196(7): 453-472.
- [8] Santos M C, Padua R M, Silva E R, et al. Microbial contamination in cosmetic products: A comparative study of preservatives effectiveness[J]. Brazilian J Pharm Sci, 2018, 54(2): e00156.
- [9] Xie C X, Tian Y, Zhu Y F, et al. Antimicrobial activity of lutein and β-carotene isolated from sea cucumber *Cucumaria frondosa*[J]. Marine Drugs, 2023, 21(2): 94.
- [10] Jin Y, Zhu Y, Zhao J, et al. Evaluation of the antimicrobial mechanism of carotenoids from sea cucumber against *Staphylococcus aureus*[J]. Frontiers Microbiol, 2023, 14: 1152394.
- [11] Masre S F, Yip G W, Sirajudeen K N S, et al. Wound healing activity of total sulfated glycosaminoglycan (GAG) from *Stichopus vastus* and *Stichopus hermanni* integumental tissue in rats[J]. Int J Mol Med Adv Sci, 2010, 6(4): 49-53.
- [12] Masre S F, Yip G W, Sirajudeen K N S, et al. Quantitative analysis of sulphated glycosaminoglycans content of Malaysian sea cucumber *Stichopus hermanni* and *Stichopus vastus*[J]. Nat Prod Res, 2012, 26(7): 684-689.

28